523 research outputs found

    Structures and Stabilities of Doubly-charged (MgO)nMg2+ (n=1-29) Cluster Ions

    Get PDF
    Ab initio perturbed ion plus polarization calculations are reported for doubly-charged nonstoichiometric (MgO)nMg2+ (n=1-29) cluster ions. We consider a large number of isomers with full relaxations of the geometries, and add the correlation correction to the Hartree-Fock energies for all cluster sizes. The polarization contribution is included at a semiempirical level also for all cluster sizes. Comparison is made with theoretical results for neutral (MgO)n clusters and singly-charged alkali-halide cluster ions. Our method is also compared to phenomenological pair potential models in order to asses their reliability for calculations on small ionic systems. The large coordination-dependent polarizabilities of oxide anions favor the formation of surface sites, and thus bulklike structures begin to dominate only after n=24. The relative stabilities of the cluster ions against evaporation of a MgO molecule show variations that are in excellent agreement with the experimental abundance spectra.Comment: Final version accepted in Journal of Chemical Physics; 8 pages plus 8 figures (6 GIFs and 2 PSs). The main difference with respect to the original submission is the inclusion of coordination-dependent polarizabilities for oxide anions. That results in substantial changes in the result

    Determination of the lowest energy structure of Ag8_8 from first-principles calculations

    Full text link
    The ground-state electronic and structural properties, and the electronic excitations of the lowest energy isomers of the Ag8_8 cluster are calculated using density functional theory (DFT) and time-dependent DFT (TDDFT) in real time and real space scheme, respectively. The optical spectra provided by TDDFT predict that the D2d_{2d} dodecahedron isomer is the structural minimum of Ag8_8 cluster. Indeed, it is borne out by the experimental findings.Comment: 4 pages, 2 figures. Accepted in Physical Review A as a brief repor

    Breaking Bonds with the Left Eigenstate Completely Renormalized Coupled-Cluster Method

    Get PDF
    The recently developed [P. Piecuch and M. Wloch, J. Chem. Phys.123, 224105 (2005)] size-extensive left eigenstate completely renormalized (CR) coupled-cluster (CC) singles (S), doubles (D), and noniterative triples (T) approach, termed CR-CC(2,3) and abbreviated in this paper as CCL, is compared with the full configuration interaction (FCI) method for all possible types of single bond-breaking reactions between C, H, Si, and Cl (except H2) and the H2SiSiH2 double bond-breaking reaction. The CCL method is in excellent agreement with FCI in the entire region R=1–3Re for all of the studied single bond-breaking reactions, whereR and Re are the bond distance and the equilibrium bond length, respectively. The CCL method recovers the FCI results to within approximately 1mhartree in the region R=1–3Reof the H–SiH3, H–Cl, H3Si–SiH3, Cl–CH3, H–CH3, and H3C–SiH3bonds. The maximum errors are −2.1, 1.6, and 1.6mhartree in the R=1–3Re region of the H3C–CH3, Cl–Cl, and H3Si–Clbonds, respectively, while the discrepancy for the H2SiSiH2 double bond-breaking reaction is 6.6 (8.5)mhartree at R=2(3)Re. CCL also predicts more accurate relative energies than the conventional CCSD and CCSD(T) approaches, and the predecessor of CR-CC(2,3) termed CR-CCSD(T)

    Accurate <i>ab initio</i> ro-vibronic spectroscopy of the X<sup>2</sup>&#8719; CCN radical using explicitly correlated methods

    Get PDF
    Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X&lt;sup&gt;2&lt;/sup&gt;&#8719; and a&lt;sup&gt;4&lt;/sup&gt;&#931;&lt;sup&gt;−&lt;/sup&gt; electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm&lt;sup&gt;−1&lt;/sup&gt; in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, &#916;H&lt;sub&gt;f&lt;/sub&gt;(0K) = 161.7 &#177; 0.5 kcal/mol

    Unexpected Magnetism of Small Silver Clusters

    Get PDF
    The ground-state electronic, structural, and magnetic properties of small silver clusters, Agn_n (2≤\len≤\le22), have been studied using a linear combination of atomic Gaussian-type orbitals within the density functional theory. The results show that the silver atoms, which are diamagnetic in bulk environment, can be magnetic when they are grouped together in clusters. The Ag13_{13} cluster with icosahedral symmetry has the highest magnetic moment per atom among the studied silver clusters. The cluster symmetry and the reduced coordination number specific of small clusters reveal as a fundamental factor for the onset of the magnetism.Comment: 4 pages, 4 figure

    Emergence of Bulk CsCl Structure in (CsCl)nCs+ Cluster Ions

    Full text link
    The emergence of CsCl bulk structure in (CsCl)nCs+ cluster ions is investigated using a mixed quantum-mechanical/semiempirical theoretical approach. We find that rhombic dodecahedral fragments (with bulk CsCl symmetry) are more stable than rock-salt fragments after the completion of the fifth rhombic dodecahedral atomic shell. From this size (n=184) on, a new set of magic numbers should appear in the experimental mass spectra. We also propose another experimental test for this transition, which explicitely involves the electronic structure of the cluster. Finally, we perform more detailed calculations in the size range n=31--33, where recent experimental investigations have found indications of the presence of rhombic dodecahedral (CsCl)32Cs+ isomers in the cluster beams.Comment: LaTeX file. 6 pages and 4 pictures. Accepted for publication in Phys. Rev.

    Lattice Distortions Around a Tl+ Impurity in NaI:Tl+ and CsI:Tl+ Scintillators. An Ab Initio Study Involving Large Active Clusters

    Get PDF
    Ab initio Perturbed Ion cluster-in-the-lattice calculations of the impurity centers NaI:Tl+ and CsI:Tl+ are pressented. We study several active clusters of increasing complexity and show that the lattice relaxation around the Tl+ impurity implies the concerted movement of several shells of neighbors. The results also reveal the importance of considering a set of ions that can respond to the geometrical displacements of the inner shells by adapting selfconsistently their wave functions. Comparison with other calculations involving comparatively small active clusters serves to assert the significance of our conclusions. Contact with experiment is made by calculating absorption energies. These are in excellent agreement with the experimental data for the most realistic active clusters considered.Comment: 7 pages plus 6 postscript figures, LaTeX. Submmited to Phys, Rev.

    Ga+, In+ and Tl+ Impurities in Alkali Halide Crystals: Distortion Trends

    Full text link
    A computational study of the doping of alkali halide crystals (AX: A = Na, K; X = Cl, Br) by ns2 cations (Ga+, In+ and Tl+) is presented. Active clusters of increasing size (from 33 to 177 ions) are considered in order to deal with the large scale distortions induced by the substitutional impurities. Those clusters are embedded in accurate quantum environments representing the surrounding crystalline lattice. The convergence of the distortion results with the size of the active cluster is analyced for some selected impurity systems. The most important conclusion from this study is that distortions along the (100) and (110) crystallographic directions are not independent. Once a reliable cluster model is found, distortion trends as a function of impurity, alkali cation and halide anion are identified and discussed. These trends may be useful when analycing other cation impurities in similar host lattices.Comment: LaTeX file. 7 pages and 2 pictures. Accepted for publication in J. Chem. Phy

    Structural and Electronic Properties of Small Neutral (MgO)n Clusters

    Get PDF
    Ab initio Perturbed Ion (PI) calculations are reported for neutral stoichiometric (MgO)n clusters (n<14). An extensive number of isomer structures was identified and studied. For the isomers of (MgO)n (n<8) clusters, a full geometrical relaxation was considered. Correlation corrections were included for all cluster sizes using the Coulomb-Hartree-Fock (CHF) model proposed by Clementi. The results obtained compare favorably to the experimental data and other previous theoretical studies. Inclusion of correlaiotn is crucial in order to achieve a good description of these systems. We find an important number of new isomers which allows us to interpret the experimental magic numbers without the assumption of structures based on (MgO)3 subunits. Finally, as an electronic property, the variations in the cluster ionization potential with the cluster size were studied and related to the structural isomer properties.Comment: 24 pages, LaTeX, 7 figures in GIF format. Accepted for publication in Phys. Rev.
    • …
    corecore